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Analysis of Guided Waves in Inhomogeneous

Bianisotropic Cylindrical Waveguides
Bernhard Jakoby, Member, IEEE, and Daniel De Zutter, Member, IEEE

Abstrrzct-- Electromagnetic fields in structures composed of
inhomogen(eous cylindrical layers are aualyzed using a propaga-

tor matrix approach. The presented formulation is capable of
analyzing fully bianisotropic media, where the involved prop-

agator matrix for bianisotropic media is derived in cylindrical

coordinates. The applicability of the method is demonstrated by
calculating the dispersion characteristics of surface waves as well

as fundamental and higher order modes on cylindrical microstrip

lines on top of an inhomogeneous bianisotropic substrate.

I. INTRODUCTION

D

UE TO ADVANCES in material science, analysis meth-

ods for electromagnetic waves in complex media have

gained increasing interest. The most general linear medium is

the so-called bianisotropic medium, which is described by four

material tensors [1]. Several known analytical and numerical

methods for ordinary isotropic media have been generalized in

order to include more complex media as well, Apart from the

coverage of general bianisotropic media, this paper focuses

on cylindrical structures featuring lateral (angular) inhomo-

geneities. [Cylindrically stratified structures are frequently used

for waveguiding structures and may also be employed to model

curved structures in an approximate way (see [2] for a general

review).

Spectrall domain analysis methods have proved to be pow-

erful tools for the analysis of planar stratified media problems

in electromagnetism for more than two decades now. Apart

from the treatment of stratified isotropic media geometries,

the approach is capable of handling structures consisting of

fully bianisotropic media [3].

Cylindrically layered structures involving isotropic media

have been analyzed in various configurations. For instance,

quasistatic approaches have been employed utilizing spectral

iterative techniques for multiconductor transmission lines [4]

and conforrnal mapping procedures for elliptical configurations

[5]. A problem featuring a special kind of inhomogeneity

in angular direction introduced by a perfectly conducting

wedge has been treated by means of a separation Ansatz [6].

Full wave solutions have been reported for microstrip patch

antennas on cylindrical, homogeneous, and isotropic substrates

[7]. The cited works represent typical approaches and contain

further references to earlier works.

Manuscript received April 10, 1995; revised November 12, 1995. Thn
work was supported by an Erwin Schrodinger Grant (JOU975-TEC) from the
Austrian Fends zur F6rderung der wissenschaftlichen Forschung.

The authors are with the Department of Informahon Technology, Electro-
magnetic Ciioup, University of Gent, B-9000 Gent, Belgium,

D. De Zutter is atso with the National Science Foundation of Belgium.
Publisher Item Identifier S 0018-9480(96)01452-4.

Recently, we dealt with a method-of-analysis for stratified

planar structures involving bianisotropic layers being period-

ically inhomogeneous in the transverse direction [8]. These

computations were based on the derivation of an eigenoperator

equation which enabled the calculation of eigenmodes suitable

for setting up expansions for the fields. The method presented

in this paper can be interpreted as a generalization of the

planar approach. However, in cylindrical coordinates it is not

possible to eliminate the radial coordinate from the occurring

eigenoperator matrix, which in general does not permit a

simple calculation of eigenmodes as in the planar case. Hence

we do not expand the fields in terms of eigenmodes, but

calculate propagator matrices that give a relation between

the transverse fields at the boundaries of inhomogeneous,

bianisotropic, cylindrical layers. Finally we remark, that this

approach principally also has been proposed by Chew for

homogeneous isotropic and anisotropic media (in the latter

case homogeneous material tensors in rectangular coordinates

are considered) [2].

II. THEORY

Assuming a time dependence exp(’wt), Maxwell’s

tions for inhomogeneous bianisotropic media read

V x H(r) = jw~(r) . E(r) + j~~(r) oH(r),

V x E(r) = –jw~(r) ~H(r) – ~w$(r) . E(r)
—

equa-

(1)

(2)

where we used the EH (Tellegen) representation of the consti-

tutive equations [1]. Adopting a cylindrical coordinate system

(r, ~, z), the r components of the field vectors can be elim-

inated from the field equations in such a way that we can

write

and

(3)

(4)

(5)

where Ekt, pkt, <kl and ~kz stand for the elements of the

material parameter tensors in cylindrical coordinates (k, 1 =

~, 4, ~). Formally> the operator matrix 4 can be constructed
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Fig. 1. Geometry of the problem.

from that of theplanar case given in [8], [9] as shown in the

Appendix.

This formulation is best suited for the analysis of cylin-

drically layered structures as shown in Fig. 1. The operator

matrix can be cast into an algebraic matrix by transforming it

to the spectral domain. As we want to deal with guided waves

in the z-direction, we assume z-dependent fields according

to exp( –jikZz) (common factors exp( –jkZz) will frequently

be suppressed in the sequel). Noting further, that fields and

material parameters must obey a 2T periodicity with respect

to ~, we can expand these quantities as Fourier series

I)(r’, @,z) = e-’k’z : Jn(.)kz)e-’n’, (6)
rl,=-m

(7)

n..~

where @ represents any field component f~ (i = 1 . . . 4) and g

denotes a function only depending upon material parameters.

Note that we assumed the material parameters to be constant

with respect to the direction of propagation z. The Fourier

series coefficients ijm (r) are given by

.+ ’71

,dn(r) = :
/

g(r, ~)e~n@d# (8)
—n

and similarly for in (r, kZ ). Due to the fact, that the material

parameters are independent of z, derivatives with respect to

z can simply be replaced by –jkZ. In contrast, the expan-
sions with respect to @lead to an infinite-dimensional matrix

equation in the expansion coefficients of the fields. This can

be seen by considering the typical functions occuring in the

evaluation of the expression ~ f

.TJ> (9)

(lo)

Substituting the expansions (6) and (7) into the above expres-

sions, multiplying by exp (.jmq5)/27 and integrating over one

period in @leads to the mth Fourier series coefficients of the

periodic expressions (9) to (12) with m going from

+cc

5 iim-nqn>

72=-CC

;5’
97i-n(-j@Lz,

n.—m

–jm
+E -

!irn–n+n,

m to

(13)

(14)

(15)

(16)

These expressions represent convolutions of discrete spectra.

Accordingly, in general each spectral field component is

related to all other spectral components “mode conversion,”

Hence the operator (3) can formally be rewritten as an infinite

dimensional matrix equation in terms of the spectral field

components

G.F=:F
where

(17)

(18)

Here fn denotes a vector containing the nth Fourier series

coefficients of the vector function f. The matrix ~ can be set

up from ~ in a straightforward manner by using~13) to (16).

For num=rical treatment, this equation has to be truncated.

The effects of the truncation will be discussed below. In

the special case of laterally homogeneous media (i.e., with

# independent material parameters) the convolution series

degenerate into a single term and the spectral field coefficients

become decoupled.

Equation (17) represents a differential equation in the radial

coordinate r. If the matrix ~ were independent of r, its solution

could formally be written—as

F = exp(~r) . c (19)

where c denotes a coefficient vector. This would represent a

solution in terms of an infinite set of eigenmodes, each obeying

a r-dependence exp or), with ~ being an eigenvalue of ~. In

the planar case, the operator matrix is indeed independe~t of

the normal coordinate (along the axis of stratification) and

hence solutions corresponding to (19) can be used to expand

the field in regions where the material parameters are constant

with respect to the axis of stratification [8]. In the circular case,

however, even for constant material parameters with respect to

r, the matrix L depends on r due to several 1/r terms (see also

the Appendix~. In the special case of homogeneous isotropic



JAKOBY AND DE ZUTTER: ANALYSIS OF GUIDED WAVES IN INHOMOGENEOUS BIANISOTROPIC CYLINDRICAL WAVEGUIDES 299

cylindrical structures, this leads to the well known eigenmodes

in terms of Hankel functions rather than exponential functions

[2]. In the general inhomogeneous and bianisotropic case,

closed form eigensolutions cannot be derived, though.

For a given cylindrical layer with inner and outer radius rl

and r2, respectively, the differential (17) can be integrated

in order to construct a propagator matrix ~ which relates

the transversal field components at rl to th~se at rz in the

following way

F(r2) = ~(r2, rl) “ F(n). (20)

Formally, the propagator matrix is given by

/

rz -

~(rz, rl) = exp &(r)dr
.

T1 —

(21)

where a possible r-dependence of the material parameters is

considered as well. Numerically, the propagator matrix can

be calculated by, e.g., subdividing the layer into L sublayers

being so thin that ~ is assumed to be constant with respect

to r within a subl~yer

Here ~ denotes the unit matrix and Ar is the thickness of a

subla~er

rz — rl
Ar. —

L“
(23)

In this paper we consider configurations as shown in Fig. 1

where an inhomogeneous cylindrical layer is covering a per-

fectly conducting wire with radius rl. Hence all Fourier series

coefficients related to tangential electric fields at rl must

vanish

For the present, let us assume an impressed transverse

current distribution at r2. The fields expressed in (20) represent

the fields just below the interface r = r2 as the current

distribution introduces jump discontinuities for the transverse

field components. In the following, we denote the radial

coordinate just below and above the interface r = TZ by r;

and r~, respectively.

Next we establish relations between the transverse fields at

r = r$. The @components in the homogeneous, isotropic
region r > r~ can be expressed in terms of the z-components

The corresponding spectral fields are decoupled due to the

homogeneity of the region; thus for a given @dependence

exp( -jnq5) we can substitute

(26)

From the field solutions in source-free homogeneous, isotropic

media, it is well known that E= and Hz fulfill Bessel’s

t-

0
strip metall ization

\

~ PECCOIC

Fig. 2. Layer with angular inhomogeneity. The metallization is present only

in the microstrip case.

differential equation. Hence they can be expressed as linear

combinations of Hankel functions of first and second kind,

If(l) (krr) and lY$2) (k.?-), respectively. Here k, denotes then

radial wavenumber

where here and in the following we assume k, to be real-

valued. With this definition of k,, the radiation condition at

infinity requires that we consider Hankel functions of second

kind only, which represent outward traveling or exponentially

vanishing fields as r ~ co. Setting

we can express the @components of the fields in terms of the

coefficients A and B, or equivalently by the z-components at

some given radius r. within the homogeneous region. Using

(25) this leads to

[1 [1

Ez ~(r~)~d,~(r) = F (r, rO) “ ~ ‘ (ro)
lf~,n(r) =~ Z>n

where

[

Fll,n F12,n
~n(r> ‘o) = Fzl ~ F22,n

1

i——
w2/L& – k:

(29)

(30)

‘2)’ denotes the derivative of IY$) with respect to itsHere H.

argument. Hence En (rz, r2 ) describes the relation between the

transverse fields at r = r:.
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Fig, 3, Surface wave disperwon curves for a wnt p~rtlally coated with an is>tropic dielectric (i, = 5. Lo = m. rz /rl = 1.1, k, ,f rl = 1 ) compared

to that of the “Goubau mode’” on the corresponding homogeneous layer ( -J@ = 2rr )

To find the fields for a given transverse current distribution,

we establish the following system of equations from the jump

conditions at the interface rz and “
. . .

(24)
by Conslctermg Conctltlons

.
(31)

Here we introduced the following symbols: vectors marked

by arrows are set up by the spectral Fourier coefficients of a

quantity, e.g.

;3(71) =

f31ir’1)

!f3,0(7’1)

f3,-1(’n)

(32)

.
The vector ,f, must not be confused with the vector fl

introduced earlier (see (18 )). The latter represents a four-

dimensiomd vector containing the lth Fourier coefficients of

the vector f, while the vector ~, is infinite-dimensional and is

set up by all Fourier coefficients of the transverse field fL(7,=
1~. .:). In ~ther words, the matrices [. . . . fl, fo, f_l. ., .] and

~~; .~;tr~;sf$k~ the transposeof each other. Accordingly,
are composed of those elements of P(r2, rl )

that relate ,~~(r;) and ,~1(rl ). The matrices ~~n represent
diagonal matrices being set up by matrix elements Fzm,n given

in (3o); the matrix elements of F~~ read

(33)

J; (Jl:) with u = #, z denotes the electric (magnetic) surface

currents residing in the interface rz. The rows in (51) succes-

sively represent the jump conditions on the transverse fields

E,, Hz, E+, H+ due to surface currents 14,$, J;, ill;, J:,
respectively. Hence, for a given interface current distribution,

we can calculate the spectral representations of the transverse

fields H4(rl), H,(rl), E,(?~), Hv(r~).
As mentioned above, the spectral expansions of the fields

are truncated in order to perform numerical calculations. The

truncation is performed by introducing a truncation parameter

N and setting

~,,n(r) =0, for in > N. (34)

The errors introduced by this truncation are twofold:

1) Higher order harmonics are not contained in the result;

and
~) even the obtained coefficients show emors as the Cou.

pling with harmonics of order 171I > N has been

neglected due to the truncation.

The first kind of error simply represents the well-known effects

in truncating Fourier series (e.g., Gibb’s phenomenon). The

second kind of error, however, is a characteristic error for the

presented method. It can be estimated by comparing the results
for lower order harmonics for increasing N, We note that the

convergence behavior with respect to N significantly depends

on the expected behavior of the fields ,~,,n appearing in the

solution vector of (31) for large n.. In principle, it would have

been possible to establish a system of equations involving, e.g.,

the spectral coefficients of Ed (r;) and H@( r~ ) rather than

E= (r;) and Hz (TJ ). However, for the problems considered

in this paper, the z-components of the fields were expected

to have moderate higher order harmonics in contrast to the

@components. This holds especially for the microstrip case

considered below, where, e.g., Ed features a singularity at

the strip edge leading to significant higher order harmonics.



JAKOBY AND DE ZU’T”TER: ANALYSIS OF GUIDED WAVES IN INHOMOGENEOUS BIANISOTROPIC CYLINDRICAL WAVEGUIDES

2.5 0: FM (real) — .
1: kit HOM (imaginary) ------

2 2: 2nd HOM (real) ....’.
3: 3rd HOM (imaginary) ---

4: 4th HOM (real) --’--

-1 ~

-1.5

0 0.25 0.5 0,75 1 $1~

0.5 ) 4

0.4

0.3

Hz 0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

.,-,f% O: FM (imaginary) —i.{’ *‘f%,. $ 1: 1st HOM (real) -----+<<,? *..,- 2: 2nd HOM (imaginary) ‘.’..”
3: 3rd HOM (real) --’-

$

?..

$

●. ..~. .*
●..,.,$”4

I I
o 0.25 0.5 0.75 1 fb/7r

Fig. 4, IZ,fi and Hz at the circumference of the core wire for the fundamental mode (FM) and
associated with Fig. 3 [~’ = 10ti,ef ).

The influence of the selected unknown fields on the conver- (u, kZ) yielding

gence behavior has been reported previously for related planar

methods as well [10].

III. SURFACE WAVEGUIDES

As a first application of the method described above, we
present the analysis of cylindrical surface waveguides with

laterally inhomogeneous layers. Thereby we refer to structures

as shown in Fig 1 in the absence of a microstrip metallization.

This mems, that we are searching for solutions of (31) for

vanishing excitation vector (i.e., the right-hand side of (31)

is zero). In other words, we are searching for combinations

301

higher order modes (HOM) of the surface waveguide

a vanishing determinant

det[~(ti, k=)] = O (35)

where ~ denotes the system matrix given in (31). For an in-

creasing number of considered harmonics, the dimension of Q

becomes comparably large, leading to well-known numerical
problems in the evaluation of determinants. One can overcome

these problems by using resealing algorithms but then one is

still confronted with a possible nonsmooth behavior of the

determinant as the parameters w and k. are varied. Previously

we reported a simple alternative method by searching for the

poles in the spectral fields for a given excitation [8]. This
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Fig, 5. Fundamental surface wave mode dispersion curves for a partially coated wwe for different chiral parameters (see text)

approach includes the risk that some determinant zeros get

lost as they are compensated by numerator zeros in the solution

forthespectral field coefficients. However, as we are dealing

with unknowns and excitation vectors that feature a distinct

physical interpretation, we can easily predict what mode will

be excited by what excitation.

Typically we chose all elements of one of the four excitation

currents to be one, which corresponds to the calculation of the

fields due to a delta current source at ~ = O. The corresponding

solution for the fields then can be interpreted as a particular

set of Green’s functions.

In the following examples, we consider a layer of the form

shown in Fig. 2 where the substrate only extends over an

angle Aq$ (here we consider the surface wave case where

no strip metallization is present). Note that an additional

inhomogeneity with respect to T is included in our approach

(see (22)). However, in the following we will restrict ourselves
to piecewise constant media with respect to the radial direction.

The homogeneous case AI# = 2rr represents a “Goubau

surface waveguide” which. for the case of isotropic substrate

media, has been intensively studied in the past [1 1]. In this

special case the wavenumber can be obtained as the root of a

transcendental function which can be written in closed form.

To }-aliclatc the approach, we first investigated an isotropic

waveguide made up of a dielectric material with er = 5

coating half the circumference of the core wire, i.e., ~~ = m.

The radii were chosen as k,,f rl = 1 and k,,fr2 = 1,1, where

k,.f = wr.f - denotes the free space wavenumber at a

reference frequency ti,,f. The following results have been

obtained with L = 6 and IV = 10 for the number of sublayers

and the truncation parameter, respectively. As the fields are

essentially concentrated within the covered region and show

sinusoidal-like behavior with respect to ~, it is clear that

numerical convergence can be achieved for relatively small

N especially in case of lower order modes.

Fig. 3 shows the dispersion curves for the fundamental as

well as the first four higher order modes where the latter fea-

ture a cut off frequency in contrast to the fundamental mode.

For comparison, the dispersion curve of the Goubau mode

for a homogeneous layer (A$ = 2Z ) is shown as well. As

expected, the fundamental mode dispersion curve approaches

that of the Goubau surface wave at higher frequencies as well

as at very low frequencies where the wavenumbers approach

the free-space wavenumber ko.

Fig. 4 shows the tangential magnetic fielcl components

If. (TI ) and ~, (rl ) at w = 10wI,f that correspond to the

surface currents at T1, J: (T1 ) and – 1$’ (rl ), respectively.

The even modes, i.e.. fundamental, 2nd and 4tb higher order

modes, show symmetric (asymmetric) behavior for Hd (IJZ )

with respect to ~ = O: therefore we show the range (O, T),

only. The opposite holds for the odd modes (1st and 3rd higher

order modes). The scaling of the amplitudes is arbitrary as

they represent eigensolutions, the ratio of corresponding 17d

and H, values is given correctly, though. Note that Ho and

11= are 90 degree out of phase. For the even (odd) modes we

chose H@(Il. ) to be real which means that the corresponding

HZ (Ho) is purely imaginary.

In Fig. 5 we compare the fundamental modes for the above

dielectric case to chiral cases, where the layer medium fea-

tures additional chiral parameters according tcl & = –< =

–]0.15- (medium I) or < = –< = –j0.3-

(medium 11). The corresponding fields Hd (Tl ) and H, (TI )

at w = 10wr,f are shown in Fig. 6. In contrast to the pure

dielectric case, the chiral media show additional imaginary

(real) parts for H@(ff= ) which are asymmetric (symmetric)

with respect to @ = O.

Another typical angular inhomogeneity is represented by

a nontruncated cylindrical layer (Ad = 27r) which is made

of bianisotropic material being homogeneous with respect to

rectangular coordinates. One can think of a layer produced by
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Fig. 6. H@ and H: at the circumference of the core wire for the fundamental modes in an inhomogeueous surface waveguide: pure dielectric and
chiral cases (w = 10~,,ef, see also Fig. 5).

cutting a circular cylinder out of a homogeneous, bianisotropic

material. IYow imagine that a hole is drilled into the center of

that cylinder which is then filled with the core wire. In other

words, the representation of the tensors g, p, ( and < in the—
rectangular x, y, z coordinate system is the sa=m~at eve~y point

within the cylindrical layer. However, their representation in

cylindrical coordinates, which actually enters our equations, is

given by [2]

and analogously for p, f and <. Hence the constitutive tensors

in cylindrical coordi~at~s are=inhomogeneous with respect to

q5. We considered for example a material obeying

=.)%.=‘0p

which is the

4.9 0 0
05

1

jo.1 , g=&()~, &=(=o
o –jo.15 --==

(38)

rpical constellation, e.g., for a ferrite with a

magnetic bias field in the x-direction. The radii were k,,f’rl =

1 and k,ef r2 = 1.1 and the numerical parameters were chosen

as L=6and N=9.

Fig. 7 shows the dispersion diagrams for the first few

modes. All modes, except the fundamental mode, feature



304

2.2

2

k./k”
18

1.6

1.4

1,2

1

lEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,

1 I

VOL W, NO 2, FEBRUARY 1996

/

,.*-..- ,s’ fundamental mode —,*” ..’” ;>
/ .“ ~+ Ist higher order mode ......

..$
..”” :$ j 2nd higher order mode !,!.!!.,

..’” .. ~$ 3rd higher order mode ,,,,,,,,,.,,,,,
..- :.

,.”” : j
,.” ~.~ :’

..” : j’
/ .:. j’

.... .. :

0 2 4 6

FIg 7. Surface wave dispersion curves for a “ferrite” coated wine.

cut-off frequencies. At low frequencies the field patterns are

similar to those one would expect for a homogeneous isotropic

coating. Fig. 8 shows the fields II@ (TI ) and H, (TI ) for all

modes existing at UJ = h,ef. However, at LIJ = 10ti,cf the

patterns look substantially different: Fig. 9 shows the fields

~T(rl) and Hz(rl) for the first four modes.

We mention that for a real ferrite, the LL tensor is. of

course, frequency dependent which can also b<handled by the

presented method, since the results are computed separately

for every frequency point.

IV. CYLINDRICAL MICROSTRIP LINES

Another example for the application of our approach is

the analysis of microstrip lines on cylindrical substrates as

shown in Fig. 2. We use the method of moments (MoM) to

solve for the propagation constants of fundamental and higher

order microstrip modes. The surface currents on the strip are

expanded in terms of a finite number of basis functions. The

expansion coefficients are then determined by enforcing the

boundary condition

E<b=Ez=O (39)

on the strip in a weighted sense. W’e u~ed the Galerkin method

where the basis functions are also used as testing functions.

The fields generated by the considered basis functions

are calculated by solving (31) for multiple right hand sides

where each excitation vector accounts for one basis function.

The testing of the obtained fields can then be performed

conveniently in spectral domain. e.g.

where E$rn)(#) denotes the field E= due to mth basis function

and Tfr )(@) is the lth testing function. Similarly the fields

8 10 12 Lo/ LLlref

E4 are tested, where we used the basis functions for J. (.J@)
as testing functions for Ez (E@), Enforcing (39) yields the

following linear system of equations

5 Azmcm=o (1=1 . ..M) (41)
rrt=l

where cm is the expansion coefficient associated with basis

function m. We then solve for the dispersion equation by

requiring that the determinant of the system matrix Atm

vanishes.

Concerning the choice of basis functions for microstrip

problems. a large number of approaches has been presented in

the past decades. It turned out, that taking into account the edge

condition in the basis functions, may lead to highly accurate

results even if only a few basis functions are used. On the other

hand, it has been reported that the incorporation of the edge

condition is not necessarily required when using a spectral

domain MoM [10]. In conventional methods. as they are used

for planar microstrip lines, spectral interaction integrals are

calculated numerically and hence computational efficiency is

increased if less integral evaluations are required (i.e. only
a few basis functions are used) and if the Fourier transform

of the basis functions is available in closed form. Hence the

usage of basis functions considering the edge condition and

having closed form Fourier transforms is indicated due to the

aforementioned reasons. In our case the situation is somewhat

different. The major factor determining computational cost is

the truncation limit IV. In the spectral domain, basis functions

featuring edge singularities show weaker decay for large

spectral indices n compared to basis functions without edge

singularities. For instance, typical basis functions for J: with

and without edge conditions are (for I@l > w/2 we have

B1 = Bz = O, where w denotes the stripwidth angle in
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Fig. 8. Ho and H, at the circumference of the core wire for the first three surface wave modes in a “ferrite” coated wire (u = 20+.,f, see also Fig. 7).

radians, see Fig. 2)

‘1(~)=#--#.=;.o(H (42)

1 sin(~)
B2(q$) = 1 e az,n = ;—

n
(43)

where Jo denotes the ordinary Bessel function of first kind
and zeroth order. The envelope of B1.., which is the Fourier

coefficient of the basis function with incorporated edge con-

dition, behaves like 1/ fi as n -+ co while that of B2,.

(no edge condition incorporated) behaves as I/n. In order

to keep the number of required space harmonics small, basis

functions without edge singularities have been used. For the

sample results given below, we used a simple “classical” set

given in [12] (see Fig. 10).

Let us first consider a hi-isotropic (chiral) medium with

E = 5E13, ~ = MO, ~ = –jO.3- and < = jO.3=.

The geometry is that shown in Fig. 2 with w = 0.47r,

k,efrl = 1, k,,fr2 = 1,1 and Ad = m. Fig. 11 shows the

convergence behavior for one up to four used basis functions

(in the order given in Fig. 10) at w = u,.f and w = 10w,ef

for the fundamental mode. In the case w = w,ef numerical
convergence is achieved for about N > 16 in all cases (with

L = 6 sublayers) and the accuracy that can be achieved with

our simple set of basis functions seems to be in the order

of a few percent at this frequency. At higher frequencies the

convergence behavior turned out to be significantly improved

(see Fig. 11 for w = 10u,ef, note the different scaling of kZ/ko
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compared to the case I-J = u,,f). During the calculation of

the dispersion curves it was found, however, that at certain
frequencies the convergence limit for the case of four basis

functions (M = 4) can be considerably higher than for

calculations with less than four basis functions. On the other

hand, for the fundamental mode even one basis function

seems to yield stable and relatively accurate results which

confirms the experience from planar microstrip calculations

[10].
Fig. 12 shows the dispersion curves of the fundamental

mode (calculated with Al = 1) and a higher order mode

(M = 3). N = 28 was chosen as truncation parameter.

Note that the choice of symmetric basis functions for J,

allows the computation of higher order modes with symmetric

I 1.25 15 1.75 2 @/n

longitudinal and asymmetric transverse currents, only. For

comparison, the related dispersion curves for an ordinary
isotropic medium with E = 5~0, /L = ~Lo, < = < = O are

shown. We remark that the choice of frequency independent

material parameters for our computational example (especially

for < and <) is, of course, not physically realistic but quite

common for sample calculations. We also note that the results

previously obtained for the homogeneous planar case [13]

show that the wavenumbers for different chirality parameters

tend to the same value in the zero frequency limit in contrast to

the result shown in Fig. 12. This is not related to the fact that

we here consider circular or inhomogeneous substrates, but

simply caused by the alternative set of constitutive equations

used in [13].
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Finally let us consider a uniaxial bianisotropic medium with

[5 o 01
E [J=&oo 50,
=X,y, z

p’ = Vog
004=

rO.3 o 0 I
(44)

<

[

= ‘~vGizi o 0.3 0

J

, <=-$.
=Z,Y)~ o 0 0.2 –

Note that a medium being uniaxial with respect to z features

the same representation of the tensors in the cylindrical coor-

dinate frame. The geometry data were w = 0.47r, k,.frl = 1

and /c.,f rz = 1.2. Fig. 13 shows the dispersion curves for the

fundamental and a higher order mode (HOM) for M = 3, ~ =

28, L = 10 and two different choices for L&J, ~~ = 0.67r

(geometry I) and Ad = 0.47r (geometry II). Note that in

the latter case the layer width is equal to the stripwidth such

that the strip covers the entire substrate. In Fig. 13 we also

show the dispersion curve for the fundamental surface wave

mode (SWM). In the homogeneous planar case, HOM’s show

cutoff as soon as they reach the SWM dispersion curve. This

iS due tO leakage into SUrfaCe waves fOr k: ,Ho~~ < kz ,swM,

since surface waves traveling away at some angle from the

microstrip line are launched [14]. Due to the circular geometry
in our case, the only existing SWM’s of course travel in the z-

direction as well and no leakage into surface waves can occur.

Hence bounded HOM’S exist even for kZ,HOM < kZ.SWM. In

the case of geometry I the dispersion curve for the calculated

HOM crosses the dispersion curve of the surface wave mode,
while for geometry II it lies below the corresponding SWM

in the entire frequency range shown. The second limit for

leakage is given by kz,HoM < k. and corresponds to leakage

into space waves. This limit is present in the circular case as

well and determines the cut-off for HOM’s,

We remark that the method is not restricted to the uniaxial

case, only. In the general case, the Fourier coefficients related

to functions g(r, ~) (see (7)), which are composed of the in-

homogeneous material parameters, are determined numerically

(this has also been done in the “ferrite” surface wave example

in the foregoing section).

Finally we mention that the chosen simple set of basis

functions served well for demonstrating the applicability of the

approach to microstrip problems with moderate computational

effort. The extension of the method to more sophisticated

sets of basis functions is straightforward. The observed con-

vergence behavior can be qualitatively compared to several

results that have been obtained earlier for planar microstrip

configurations; a review on such works can be found in [10].

V. CONCLUSION

A propagator matrix approach for the treatment of problems

involving cylindrical. inhomogeneous, and bianisotropic layers

has been presented. The method is based upon a spectral

technique, leading to infinite-dimensional matrix equations in

the spectral domain. By truncating the occuring matrices, an

approximation for the propagator matrix for the transverse

fields in an inhomogeneous bianisotropic layer can be calcu-

lated. We showed the application of the method to cylindrical

surface-wave problems as well as to microstrip problems.

The peculiarities of the approach including the convergence

behavior have been discussed. Several sample results show

the applicability of the method.

APPENDIX

The Matrix Operator &

Formally, Maxwell’s equations in cylindrical coordinates

can be obtained from those written in rectangular coordinates

(prim,ed in the following). Inspection of the curl operator in

cylindrical coordinates

shows similarity with that of a rectangular coordinate system.

The picture is essentially disturbed by the term I/r r9/& r

which prevents the operator matrix from being antisymmetric.

The situation can be clarified by considering the operator

identity

(46)

which allows us to write an antisymmetric operator matrix on

the left hand sides of (1) and (2) provided that the disturbing

J/r terms are moved to the right hand sides. Doing so, and

substituting the derivative operators as

lat?aa aa
——+—,—+— ,—+— (47)
r 8+ ax’ az dy’ i% 82’
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and the material parameter indices according to

$b-,i.. +y’,r+z’ (48)

except for

yields Maxwell’s equations for a rectangular coordinate system

(x’, y’, z’) (in the planar case treated previously [8], [9]

the z’ axis was assumed to be the axis of stratification:

it hence corresponds to r in the current formulation). The

additional terms +1/r in (49) are the formal consequence of

the procedure described above.

This means, that the operator matrix previously obtained

for the rectangular coordinate system [8], [9] can be utilized
to construct that in cylindrical coordinates by using the above

substitution rules in the other direction. The result reads
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(57) ,C34= &z + En.G + (8o + t.r)~,

.,

(61)

c’=-y– ‘5.r(-qt – G-z)

(62) r rlr ‘

(63)

(64)

(65)

(66)

(67)

(68)



310 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44> NO. 2, FEBRUARY 1996

and

(74)

(75)

Note that operators occuring in the numerator of fractions do

not

[lJ

[2]

[3]

[4]

[5]

[6]

act on the denominator d..
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