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Analysis of Guided Waves in Inhomogeneous
Bianisotropic Cylindrical Waveguides

Bernhard Jakoby, Member, IEEE, and Daniél De Zutter, Member, IEEE

Abstract—— Electromagnetic fields in structures composed of
inhomogeneous cylindrical layers are analyzed using a propaga-
tor matrix approach. The presented formulation is capable of
analyzing fully bianisotropic media, where the involved prop-
agator matrix for bianisotropic media is derived in cylindrical
coordinates. The applicability of the method is demonstrated by
calculating the dispersion characteristics of surface waves as well
as fundamental and higher order modes on cylindrical microstrip
lines on top of an inhomogeneous bianisotropic substrate.

I. INTRODUCTION

UE TO ADVANCES in material science, analysis meth-

ods for electromagnetic waves in complex media have
gained increasing interest. The most general linear medium is
the so-called bianisotropic medium, which is described by four
material tensors [1]. Several known analytical and numerical
methods for ordinary isotropic media have been generalized in
order to include more complex media as well. Apart from the
coverage of general bianisotropic media, this paper focuses
on cylindrical structures featuring lateral (angular) inhomo-
geneities. Cylindrically stratified structures are frequently used
for waveguiding structures and may also be employed to model
curved structures in an approximate way (see [2] for a general
review).

Spectral domain analysis methods have proved to be pow-
erful tools for the analysis of planar stratified media problems
in electromagnetism for more than two decades now. Apart
from the treatment of stratified isotropic media geometries,
the approach is capable of handling structures consisting of
fully bianisotropic media [3].

Cylindrically layered structures involving isotropic media
have been analyzed in various configurations. For instance,
quasistatic approaches have been employed utilizing spectral
iterative techniques for multiconductor transmission lines [4]
and conformal mapping procedures for elliptical configurations
[5]. A problem featuring a special kind of inhomogeneity
in angular direction introduced by a perfectly conducting
wedge has been treated by means of a separation Ansatz [6].
Full wave solutions have been reported for microstrip patch
antennas on cylindrical, homogeneous, and isotropic substrates
[7]. The cited works represent typical approaches and contain
further references to earlier works.
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Recently, we dealt with a method-of-analysis for stratified
planar structures involving bianisotropic layers being period-
ically inhomogeneous in the transverse direction [8]. These
computations were based on the derivation of an eigenoperator
equation which enabled the calculation of eigenmodes suitable
for setting up expansions for the fields. The method presented
in this paper.can be interpreted as a generalization of the
planar approach. However, in cylindrical coordinates it is not
possible to eliminate the radial coordinate from the occurring
eigenoperator matrix, which in general does not permit a
simple calculation of eigenmodes as in the planar case. Hence
we do not expand the fields in terms of eigenmodes, but
calculate propagator matrices that give a relation between
the transverse fields at the boundaries of inhomogeneous,
bianisotropic, cylindrical layers. Finally we remark, that this
approach principally also has been proposed by Chew for
homogeneous isotropic and anisotropic media (in the latter
case homogeneous material tensors in rectangular coordinates
are considered) [2].

II. THEORY

Assuming a time dependence exp(jwt), Maxwell’s equa-
tions for inhomogeneous bianisotropic media read

V x H(r) = jwg(r) - E(r) + jwé(r) -H(r), )
¥ x B(r) = —jup(r) -H) - jwi(r) BE) @

where we used the EH (Tellegen) representation of the consti-
tutive equations [1]. Adopting a cylindrical coordinate system
(r,¢,z), the r components of the field vectors can be elim-
inated from the field equations in such a way that we can
write

)
L-f= g;f 3)
with
h E,
f2 Ez
f = = 4
T3 o, 4)
f4 H:
and
g 0
L= é(rv 59 5z'a€kl>ﬂkl,€kla<.kl> 5)

where e1y, pri, €k and (g stand for the elements of the
material parameter tensors in cylindrical coordinates (k,! =
7, ¢, z). Formally, the operator matrix £ can be constructed
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Fig. 1. Geometry of the problem.

from that of the planar case given in [8], [9] as shown in the
Appendix.

This formulation is best suited for the analysis of cylin-
drically layered structures as shown in Fig. 1. The operator
matrix can be cast into an algebraic matrix by transforming it
to the spectral domain. As we want to deal with guided waves
in the z-direction, we assume z-dependent fields according
to exp(—jk.z) (common factors exp(—jk,z) will frequently
be suppressed in the sequel). Noting further, that fields and
material parameters must obey a 27 periodicity with respect
to ¢, we can expand these quantities as Fourier series

V(r,¢,2) = 7 N dalrk)e T (6)

n=—0o0

oo
g(r,¢) = > galr)ei™? 7
n=—00

where 9 represents any field component f; (1 =1---4) and g
denotes a function only depending upon material parameters.
Note that we assumed the material parameters to be constant
with respect to the direction of propagation z. The Fourier
series coefficients g, (r) are given by

I ;

i) =52 [ atng)med ®

2r )

and similarly for 4,,(r, k.). Due to the fact, that the material
parameters are independent of z, derivatives with respect to
z can simply be replaced by —jk.. In contrast, the expan-
sions with respect to ¢ lead to an infinite-dimensional matrix
equation in the expansion coefficients of the fields. This can
be seen by considering the typical functions occuring in the
evaluation of the expression £ - f

9, ©)

T (10
%a%gw, (‘11)
e TPt (12)

Substituting the expansions (6) and (7) into the above expres-
sions, multiplying by exp (jm¢)/27 and integrating over one
period in ¢ leads to the mth Fourier series coefficients of the
periodic expressions (9) to (12) with m going from —oo to
+00

Z gm—nlﬁna

(13)
1 S o
= > Gmon(=gn)a, (14)
_Tm Z g?nfnq/;ny (15)
_:gm Y Gmen(=in)dn. (16)

These expressions represent convolutions of discrete spectra.
Accordingly, in general each spectral field component is
related to all other spectral components “mode conversion.”
Hence the operator (3) can formally be rewritten as an infinite
dimensional matrix equation in terms of the spectral field
components

0

L F=—F 7
= or
where
E
F=1f (18)

Here f,, denotes a vector containing the nth Fourier series
coefficients of the vector function f. The matrix L can be set
up from £ in a straightforward manner by using (13) to (16).
For numerical treatment, this equation has to be truncated.
The effects of the truncation will be discussed below. In
the special case of laterally homogeneous media (i.e., with
¢ independent material parameters) the convolution series
degenerate into a single term and the spectral field coefficients
become decoupled.

Equation (17) represents a differential equation in the radial
coordinate r. If the matrix L were independent of r, its solution
could formally be written as

F= eXp(Lr) -c 19

where c denotes a coefficient vector. This would represent a
solution in terms of an infinite set of eigenmodes, each obeying
a r-dependence exp (Ar), with X being an eigenvalue of L. In
the planar case, the operator matrix is indeed independent of
the normal coordinate (along the axis of stratification) and
hence solutions corresponding to (19) can be used to expand

the field in regions where the material parameters are constant

with respect to the axis of stratification [8]. In the circular case,
however, even for constant material parameters with respect to
r, the matrix L depends on r due to several 1/r terms (see also
the Appendix). In the special case of homogeneous isotropic
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cylindrical structures, this leads to the well known eigenmodes
in terms of Hankel functions rather than exponential functions
[2]. In the general inhomogeneous and bianisotropic case,
closed form eigensolutions cannot be derived, though.

For a given cylindrical layer with inner and outer radius 7
and 79, respectively, the differential (17) can be integrated
in order to construct a propagator matrix P which relates
the transversal field components at 7 to those at r9 in the
following way

F(rg) = P(rz,71) - F(r1). (20)
Formally, the propagator matrix is given by
T2 .
P(rg,m1) = exp/ L(r)dr 2D
1

where a possible r-dependence of the material parameters is
considered as well. Numerically, the propagator matrix can
be calculated by, e.g., subdividing the layer into I sublayers
being so thin that L is assumed to be constant with respect
to 7 within a sublayer

P(ro,r) & (22)

H I+ L(Tl + nAr)Ar).

n=L—1

Here 1 denotes the unit matrix and Ar is the thickness of a
sublayer

To — 71
Ar =
"Y1

In this paper we consider configurations as shown in Fig. 1
where an inhomogeneous cylindrical layer is covering a per-
fectly conducting wire with radius ;. Hence all Fourier series
coefficients related to tangential electric fields at r; must
vanish

(23)

E¢,n(7“1) = Ez,n(Tl) =0 or fl,n(rl) = f2,n(7"1) =0.

24

For the present, let us assume an impressed transverse
current distribution at 5. The fields expressed in (20) represent
the fields just below the interface r = 79 as the current
distribution introduces jump discontinuities for the transverse
field components. In the following, we denote the radial
coordinate just below and above the interface r = r3 by 5
and ry, respectively. .

Next we establish relations between the transverse fields at
r = r5. The ¢-components in the homogeneous, isotropic
region r > r; can be expressed in terms of the z-components

i)l 15E ] e
Hq5 w2M€—“k§ —].LUE% %%E Hz

The corresponding spectral fields are decoupled due to the
homogeneity of the region; thus for a given ¢-dependence
exp(—jng¢) we can substitute

8_¢ — —Jn. (26)
From the field solutions in source-free homogeneous, isotropic
media, it is well known that £, and H, fulfill Bessel’s

strip metallization

substrate

Fig. 2. Layer with angular inhomogeneity. The metallization is present only
in the microstrip case.

differential equation. Hence they can be expressed as linear
combinations of Hankel functions of first and second kind,
H,(zl)(krr) and H7(12)(k,~7‘), respectively. Here &, denotes the
radial wavenumber

b — Vwlep — k2; wep > k2, @7
T —iVEE - wep;  Wlep < k2

where here and in the following we assume k. to be real-
valued. With this definition of k,., the radiation condition at
infinity requires that we consider Hankel functions of second
kind only, which represent outward traveling or exponentially
vanishing fields as » — oo. Setting

E. o (ry= AH®(k,r), H,,.(r)=BH® (k) (28)

we can express the ¢-components of the fields in terms of the
coefficients A and B, or equivalently by the z-components at
some given radius ro within the homogeneous region. Using
(25) this leads to

E~I¢ n(T) ) ) Ez n(?‘o):|
o - F r,T . ~ 29
[H¢,n(r) E.0vro)- 157 (ro) (29)
where
_ | Fiie Fion
En(r, o) = |7F21,n F22,n]
. 1
T w?pe — k2
_nky HO (k) ' (k,r)
% T HE (kero) ]wuerff)(krrO)
el O ko) ke HO (ker)
Jwe T HD (koro) T HD (kro)
(30)

7
Here H,(lz) denotes the derivative of H,(f) with respect to its

argument. Hence En(m, r9) describes the relation between the

transverse fields at r = .
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Fig. 3. Surface wave dispersion curves for a wire partially coated with an isotropic dielectric (¢, = 5, Mo = w, ra/r1 = 1.1, ker1 = 1) compared
to that of the “Goubau mode” on the corresponding homogeneous layer (A¢ = 2m)

To find the fields for a given transverse current distribution,
we establish the following system of equations from the jump
conditions at the interface r» and by considering conditions
(24)

=5
B23 224 _; Q £3(7.1) ~i\g¢
I N N O B ETCCR e
pi3 pi _pll _pi2 f'z(?’;“) ﬁs
P33 p3d w2l 22 207 2,
P~ pP" -F F o =5
— = = = falry) .y

(3D
Here we introduced the following symbols: vectors marked
by arrows are set up by the spectral Fourier coefficients of a
quantity, e.g.

Hy1(r1)

- f3.1(71)
fa(r) = f:%,o(?‘l) = | Hyolr1) (32)

Hy 1()

The vector fz must not be confused with the vector f’l
introduced earlier (see (18)). The latter represents a four-
dimensional vector containing the [th Fourier coefficients of

the vector f, while the vector f . is infinite-dimensional and is
set up by all Fourier coefficients of the transverse field fula =
1-.-4). In other words, the matrices [...,f;.f5.f 1....] and

-

[ f 1 f'z., f 34 f4] are the transpose of each other. Accordingly.
the matrices gkl are composed of those elements of P (ry,7¢)

that relate f,(r5) and f,(r1). The matrices glm represent
diagonal matrices being set up by matrix elements Fy,, ,, given
in (30); the matrix elements of gm read

Fi.i;
Flm__ lm.1s
1} _{

0; i (33)

JJ (M?2) with v = ¢, = denotes the electric (magnetic) surface
currents residing in the interface ro. The rows in (31) succes-
sively represent the jump conditions on the transverse fields
E. H. E, Hy due to surface currents J\If, Jqf,Mfw J2,
respectively. Hence, for a given interface current distribution,
we can calculate the spectral representations of the transverse
fields Hy(rv), Ho(r1), B.(rd ), H.(r]).

As mentioned above, the spectral expansions of the fields
are truncated in order to pertorm numerical calculations. The
truncation is performed by introducing a truncation parameter
N and setting

fon(ry =0, for |n|> N. (34)

The errors introduced by this truncation are twofold:

1) Higher order harmonics are not contained in the result;
and

2) even the obtained coefficients show errors as the cou-
pling with harmonics of order |n] > N has been
neglected due to the truncation.

The first kind of error simply represents the well-known effects
in truncating Fourier series (e.g., Gibb’s phenomenon). The
second kind of error, however, is a characteristic error for the
presented method. It can be estimated by comparing the results
for lower order harmonics for increasing N. We note that the
convergence behavior with respect to N significantly depends
on the expected behavior of the fields fm appearing in the
solution vector of (31) for large n. In principle, it would have
been possible to establish a system of equations involving, e.g.,
the spectral coefficients of F,(ry) and H,(rJ) rather than
Ez(v";r ) and H Z(7'3’ ). However, for the problems considered
in this paper, the z-components of the fields were expected
to have moderate higher order harmonics in contrast to the
¢-components. This holds especially for the microstrip case
considered below, where, e.g.. E, features a singularity at
the strip edge leading to significant higher order harmonics.
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Fig. 4. Hy and H; at the circumference of the core wire for the fundamental mode (FM) and higher order modes (HOM) of the surface waveguide

associated with Fig. 3 (w = 10wpef)-

The influence of the selected unknown fields on the conver-
gence behavior has been reported previously for related planar
methods as well [10].

III. SURFACE WAVEGUIDES

As a first application of the method described above, we
present the analysis of cylindrical surface waveguides with
laterally inhomogeneous layers. Thereby we refer to structures
as shown in Fig 1 in the absence of a microstrip metallization.
This means, that we are searching for solutions of (31) for
vanishing excitation vector (i.e., the right-hand side of (31)
is zero). In other words, we are searching for combinations

(w, k) yielding a vanishing determinant

det[C(w, k)] =0 (35)
where C denotes the system matrix given in (31). For an in-
creasing number of considered harmonics, the dimension of C
becomes comparably large, leading to well-known numerical
problems in the evaluation of determinants. One can overcome
these problems by using rescaling algorithms but then one is
still confronted with a possible nonsmooth behavior of the
determinant as the parameters w and k, are varied. Previously
we reported a simple alternative method by searching for the
poles in the spectral fields for a given excitation [8]. This
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approach includes the risk that some determinant zeros get
lost as they are compensated by numerator zeros in the solution
for the spectral field coefficients. However, as we are dealing
with unknowns and excitation vectors that feature a distinct
physical interpretation, we can easily predict what mode will
be excited by what excitation.

Typically we chose all elements of one of the four excitation
currents to be one, which corresponds to the calculation of the
fields due to a delta current source at ¢ = 0. The corresponding
solution for the fields then can be interpreted as a particular
set of Green’s functions.

In the following examples, we consider a layer of the form
shown in Fig. 2 where the substrate only extends over an
angle A¢ (here we consider the surface wave case where
no strip metallization is present). Note that an additional
inhomogeneity with respect to r is included in our approach
(see (22)). However, in the following we will restrict ourselves
to piecewise constant media with respect to the radial direction.
The homogencous case A¢ = 27 represents a “Goubau
surface waveguide” which, for the case of isotropic substrate
media, has been intensively studied in the past {11]. In this
special case the wavenumber can be obtained as the root of a
transcendental function which can be written in closed form.

To validate the approach, we first investigated an isotropic
waveguide made up of a dielectric material with ¢, = &
coating half the circumference of the core wire, i.e., A¢ = 7.
The radii were chosen as k..;r; = 1 and kesro = 1.1, where
kret = wrer\/Eotip denotes the free space wavenumber at a
reference frequency w,.;. The following results have been
obtained with I, = 6 and N = 10 for the number of sublayers
and the truncation parameter, respectively. As the fields are
essentially concentrated within the covered region and show
sinusoidal-like behavior with respect to ¢, it is clear that
numerical convergence can be achieved for relatively small
N especially in case of lower order modes.

15 20 25 30

W/wref

Fundamental surface wave mode dispersion curves for a partially coated wire for different chiral parameters (see text)

Fig. 3 shows the dispersion curves for the fundamental as
well as the first four higher order modes where the latter fea-
ture a cut off frequency in contrast to the fundamental mode.
For comparison, the dispersion curve of the Goubau mode
for a homogeneous layer (A¢ = 2x) is shown as well. As
expected, the fundamental mode dispersion curve approaches
that of the Goubau surface wave at higher frequencies as well
as at very low frequencies where the wavenumbers approach
the free-space wavenumber k.

Fig. 4 shows the tangential magnetic field components
Hy(r) and H.(r1) at w = 10w, that correspond to the
surface currents at vy, J¥(ry) and —JF(ry). respectively.
The even modes, i.e., fundamental, 2nd and 4th higher order
modes, show symmetric (asymmetric) behavior for Hy(H,)
with respect to ¢ = 0; therefore we show the range (0, 7),
only. The opposite holds for the odd modes (1st and 3rd higher
order modes). The scaling of the amplitudes is arbitrary as
they represent eigensolutions, the ratio of corresponding H,
and H. values is given correctly. though. Note that Hy and
H. are 90 degree out of phase. For the even (odd) modes we
chose Hy(H:) to be real which means that the corresponding
H.(Hy) is purely imaginary.

In Fig. 5 we compare the fundamental modes for the above
dielectric case to chiral cases, where the layer medium fea-
tures additional chiral parameters according to § = —( =
—j0.15 /g0 (medium I) or & = —¢ = —j0.3,/e0ju0
(medium II). The corresponding fields Hy(r1) and H.(r;)
at w = 10wys are shown in Fig. 6. In contrast to the pure
dielectric case, the chiral media show additional imaginary
(real) parts for Hy(H.) which are asymmetric (symmetric)
with respect to ¢ = 0.

Another typical angular inhomogeneity is represented by
a nontruncated cylindrical layer (A¢ = 27) which is made
of bianisotropic material being homogeneous with respect to
rectangular coordinates. One can think of a layer produced by
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Fig. 6. H, and H: at the circumference of the core wire for the fundamental modes in an inhomogeneous surface waveguide: pure dielectric and

chiral cases (w 10wyef. see also Fig. 5).

cutting a circular cylinder out of a homogeneous, bianisotropic
material. Now imagine that a hole is drilled into the center of
that cylinder which is then filled with the core wire. In other
words, the representation of the tensors g, £ and ¢ in the
rectangular z, y, z coordinate system is the same at every point
within the cylindrical layer. However, their representation in
cylindrical coordinates, which actually enters our equations, is
given by [2] )

P R (36)
where
cos¢p —sing O
T = |sing cos¢p O 37
- 0 0 1

and analogously for ;, £ and ¢. Hence the constitutive tensors
in cylindrical coordinates are inhomogeneous with respect to
¢. We considered for example a material obeying

49 0 0
p =m0 5  j01l), g=el, £=(=0
s 0 —jo1 5 - T T
(38)

which is the typical constellation, e.g., for a ferrite with a
magnetic bias field in the z-direction. The radii were ko1 =
1 and ke = 1.1 and the numerical parameters were chosen
as L =6 and N = 9.

Fig. 7 shows the dispersion diagrams for the first few
modes. All modes, except the fundamental mode, feature
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Fig 7. Surface wave dispersion curves for a “ferrite” coated wire.

cut-off frequencies. At low frequencies the field patterns are
similar to those one would expect for a homogeneous isotropic
coating. Fig. 8 shows the fields Hy(r1) and H.(rq) for all
modes existing at w = 2w..s. However, at w = 10w,es the
patterns look substantially different: Fig. 9 shows the fields
H,(ry) and H.(ry) for the first four modes.

We mention that for a real ferrite, the p tensor is. of
course, frequency dependent which can also be handled by the
presented method, since the results are computed separately
for every frequency point.

IV. CYLINDRICAL MICROSTRIP LINES

Another example for the application of our approach is
the analysis of microstrip lines on cylindrical substrates as
shown in Fig. 2. We use the method of moments (MoM) to
solve for the propagation constants of fundamental and higher
order microstrip modes. The surface currents on the strip are
expanded in terms of a finite number of basis functions. The
expansion coefficients are then determined by enforcing the
boundary condition

Ey,=E, =0 (39)

on the strip in a weighted sense. We used the Galerkin method
where the basis functions are also used as testing functions.

The fields generated by the considered basis functions
are calculated by solving (31) for multiple right hand sides
where each excitation vector accounts for one basis function.
The testing of the obtained fields can then be performed
conveniently in spectral domain, e.g.

A :/ TO(HE™ (p)dgp = 27> T EMD  (40)

—T7

where E£m>(¢) denotes the field £ due to rnth basis function

and TW(¢) is the Ith testing function. Similarly the fields

Ey are tested, where we used the basis functions for J,(.J4)
as testing functions for E.(E,). Enforcing (39) yields the
following linear system of equations

A
Apmem =0 (I=1..-M) (41)
1

m=

where ¢, is the expansion coefficient associated with basis
function m. We then solve for the dispersion equation by
requiring that the determinant of the system matrix Ay,
vanishes.

Concerning the choice of basis functions for microstrip
problems. a large number of approaches has been presented in
the past decades. It turned out, that taking into account the edge
condition in the basis functions, may lead to highly accurate
results even if only a few basis functions are used. On the other
hand, it has been reported that the incorporation of the edge
condition is not necessarily required when using a spectral
domain MoM [10]. In conventional methods. as they are used
for planar microstrip lines, spectral interaction integrals are
calculated numerically and hence computational efficiency is
increased if less integral evaluations are required (i.e. only
a few basis functions are used) and if the Fourier transform
of the basis functions is available in closed form. Hence the
usage of basis functions considering the edge condition and
having closed form Fourier transforms is indicated due to the
aforementioned reasons. In our case the situation is somewhat
different. The major factor determining computational cost is
the truncation limit N. In the spectral domain, basis functions
featuring edge singularities show weaker decay for large
spectral indices n compared to basis functions without edge
singularities. For instance, typical basis functions for .J, with
and without edge conditions are (for |¢| > w/2 we have
Bi = B» = 0, where w denotes the stripwidth angle in
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Fig. 8. H, and H. at the circumference of the core wire for the first three surface wave modes in a “ferrite” coated wire (w = 2wyet, see also Fig. 7).

radians, see Fig. 2)

1 -
Bi(¢) = = o By =20(50). @
()
By(¢) =10 By = %Sin(f) 43)

where Jy denotes the ordinary Bessel function of first kind
and zeroth order. The envelope of B _,, which is the Fourier
coefficient of the basis function with incorporated edge con-
dition, behaves like 1/y/n as n — oo while that of Ba,,
(no edge condition incorporated) behaves as 1/n. In order
to keep the number of required space harmonics small, basis
functions without edge singularities have been used. For the

sample results given below, we used a simple “classical” set
given in [12] (see Fig. 10).

Let us first consider a bi-isotropic (chiral) medium with
e = beo,pi = fio, £ = —j0.3,/Fofip and ¢ = j0.3,/Fofio.
The geometry is that shown in Fig. 2 with w = 0.4,
krett1 = 1,kresra = 1.1 and A¢ = «. Fig. 11 shows the
convergence behavior for one up to four used basis functions
(in the order given in Fig. 10) at w = wer and w = 10wep
for the fundamental mode. In the case w = wef Dumerical
convergence is achieved for about N > 16 in all cases (with
L = 6 sublayers) and the accuracy that can be achieved with
our simple set of basis functions seems to be in the order
of a few percent at this frequency. At higher frequencies the
convergence behavior turned out to be significantly improved
(see Fig. 11 for w = 10w,.¢, note the different scaling of k. / ko
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Flg 9. As Flg. 8 but w = 10\-‘/’1‘9[

compared to the case w = wyer). During the calculation of
the dispersion curves it was found, however, that at certain
frequencies the convergence limit for the case of four basis
functions (A = 4) can be considerably higher than for
calculations with less than four basis functions. On the other
hand, for the fundamental mode even one basis function
seems to yield stable and relatively accurate results which
confirms the experience from planar microstrip calculations
[10].

Fig. 12 shows the dispersion curves of the fundamental
mode (calculated with M = 1) and a higher order mode
(M = 3). N = 28 was chosen as truncation parameter.
Note that the choice of symmetric basis functions for .J,
allows the computation of higher order modes with symmetric

o/

longitudinal and asymmetric transverse currents, only. For
comparison, the related dispersion curves for an ordinary
isotropic medium with & deg. it = pg, € = ¢ = 0 are
shown. We remark that the choice of frequency independent
material parameters for our computational example (especially
for £ and () is, of course, not physically realistic but quite
common for sample calculations. We also note that the results
previously obtained for the homogeneous planar case [13]
show that the wavenumbers for different chirality parameters
tend to the same value in the zero frequency limit in contrast to
the result shown in Fig. 12. This is not related to the fact that
we here consider circular or inhomogeneous substrates. but
simply caused by the alternative set of constitutive equations
used in [13].
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Fig. 10. Basis/testing functions used for the microstrip analysis.

Finally let us consider a uniaxial bianisotropic medium with

5 0 0
:xyz-_—Eoo 5 07, H:M0£7
e 0 0 4 - "
03 0 0 (
£ =—Jyeopo| 0 03 0 |, (=-¢
s 0 0 02 - T

Note that a medium being uniaxial with respect to z features
the same representation of the tensors in the cylindrical coor-
dinate frame. The geometry data were w = 0.47, ko = 1
and krerrs = 1.2. Fig. 13 shows the dispersion curves for the
fundamental and a higher order mode (HOM) for M = 3, N =
28, L = 10 and two different choices for A¢, A¢ = 0.67
(geometry 1) and A¢ = 0.47 (geometry II). Note that in
the latter case the layer width is equal to the stripwidth such
that the strip covers the entire substrate. In Fig. 13 we also
show the dispersion curve for the fundamental surface wave
mode (SWM). In the homogeneous planar case, HOM’s show
cutoff as soon as they reach the SWM dispersion curve. This
is due to leakage into surface waves for k. wom < k. .swwm.
since surface waves traveling away at some angle from the
microstrip line are launched [14]. Due to the circular geometry
in our case, the only existing SWM’s of course travel in the z-
direction as well and no leakage into surface waves can occur.
Hence bounded HOM’s exist even for &, nom < k..gwnm. In
the case of geometry I the dispersion curve for the calculated
HOM crosses the dispersion curve of the surface wave mode,
while for geometry II it lies below the corresponding SWM

in the entire frequency range shown. The second limit for
leakage is given by k. nom < ko and corresponds to leakage
into space waves. This limit is present in the circular case as
well and determines the cut-off for HOM’s,

We remark that the method is not restricted to the uniaxial
case, only. In the general case, the Fourier coefficients related
to functions g(r, @) (see (7)), which are composed of the in-
homogeneous material parameters, are determined numerically
(this has also been done in the “ferrite” surface wave example
in the foregoing section).

Finally we mention that the chosen simple set of basis
functions served well for demonstrating the applicability of the
approach to microstrip problems with moderate computational
effort. The extension of the method to more sophisticated
sets of basis functions is straightforward. The observed con-
vergence behavior can be qualitatively compared to several
results that have been obtained earlier for planar microstrip
configurations; a review on such works can be found in [10].

V. CONCLUSION

A propagator matrix approach for the treatment of problems
involving cylindrical, inhomogeneous, and bianisotropic layers
has been presented. The method is based upon a spectral
technique, leading to infinite-dimensional matrix equations in
the spectral domain. By truncating the occuring matrices, an
approximation for the propagator matrix for the transverse
fields in an inhomogeneous bianisotropic layer can be calcu-
lated. We showed the application of the method to cylindrical
surface-wave problems as well as to microstrip problems.
The pecularities of the approach including the convergence
behavior have been discussed. Several sample results show
the applicability of the method.

APPENDIX

The Matrix Operator L

Formally, Maxwell’s equations in cylindrical coordinates
can be obtained from those written in rectangular coordinates
(primed in the following). Inspection of the curl operator in
cylindrical coordinates

a 13
g “or vag | [A
VxA=| & 0 -5 |4 (45)
~r5s rorl O A

shows similarity with that of a rectangular coordinate system.
The picture is essentially disturbed by the term 1/r8/0r
which prevents the operator matrix from being antisymmetric.
The situation can be clarified by considering the operator
identity
19 1 0
rar r " ar
which allows us to write an antisymmetric operator matrix on
the left hand sides of (1) and (2) provided that the disturbing
1/r terms are moved to the right hand sides. Doing so, and
substituting the derivative operators as
10 o 0 0 9 %)
—_— s e — 3 ——, e ) ———
rd¢ 9’ dz dy'’ or oz

(46)

7
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and the material parameter indices according to

!

~

(48)

p—2.2 =y —
except for

(49)

e 4
Jwr

£Z¢ — é-y/‘r/’ CU/-'L‘I

Geo jwr -
yields Maxwell’s equations for a rectangular coordinate system
(«’,9',2') (in the planar case treated previously [8], [9]
the 2’ axis was assumed to be the axis of stratification:
it hence corresponds to r in the current formulation). The
additional terms %1/r in (49) are the formal consequence of
the procedure described above.

This means, that the operator matrix previously obtained
for the rectangular coordinate system [8], [9] can be utilized
to construct that in cylindrical coordinates by using the above
substitution rules in the other direction. The result reads

Li1 = —C0 — ‘}—ul)v: + (0g — Gor)A — 120 B, (50)
Lo1 = Cpp + (02 + Cor) A + pigrB. (51
L31=¢c.6 + e, A+ (0p +E-0)B. (52)
Ly = —gpg — €grd + (0. — €4r) B, (53)
L19 ==z + (0p ~ Cor)C — jzpn D, (54)
Lo = Cpz + (82 + Cpr)C + prg, d. (55)
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Fig. 13. Microstrip dispersion curves for an inhomogencously coated wire with bianisotropic substrate for two different substrate widths (A¢ = 0.67
(64)

and 0.47 for geometry I and II, respectively).
‘C32 =g,y + Ezrc + (845 + Ezr)Dv (56)
(57)

£42 = —€¢z — 8451'0 + (az - &i)r)Da

(58)
(59)
(60)
(61)

£13 = —Uzp + (845 - CZ’!‘)E - Ufszv
L3 = pgp + (0 + Cor)E + pgr
1
633 = gzqﬁ - ﬁ +e B+ (ada + gzr)Fn
Lyz = —Epp — €rE + (02 — &40 ) T,
Lyg=—pz + (845 - Czr)G - ,uera (62)

Los = prgz + (0z + Cor)G + pgr H,
['34 = 522 + Ezv"G + (84: + gzr)Ha
£44 = _Sqﬁz - Ed)rG + (8z - €¢T)H

where
- d

A= _GrngTT _ €rr(az - er&),
d, :
Err(az - CTQS)

?

€T¢<’I‘T‘
B =
+ 4
d

dr
_5rzﬂrr _ grr(_alﬁ - CI‘Z)

C=
dr

(63)

(65)

(66)
(67)

(68)
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D= ersz ew({iz* Cm)7 69)
5o Mr;frr N Mrr(—lezr_ Smﬁ)’ (70)
I _57‘7;;:7“(Z> ﬁ Crr(*%r— §r¢)’ (71)
G /’chzifr'r N uw(aﬁlr— frz)’ 72)
I nf:rzl;:m B Cw(aq;: ) 73)
dv = Errpirr = rrCor, (74)
0, 1o, _ 10 75)

T jwrdg’ T jwor

Note that operators occuring in the numerator of fractions do
not act on the denominator d,.

(L]
(2]
(3]

(4]

[6]
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